Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

نویسندگان

  • Sama Azadi
  • Ayoub Karimi-Jashni
چکیده

Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecast generation model of municipal solid waste using multiple linear regression

The objective of this study was to develop a forecast model to determine the rate of generation of municipal solid waste in the municipalities of the Cuenca del Cañón del Sumidero, Chiapas, Mexico. Multiple linear regression was used with social and demographic explanatory variables. The compiled database consisted of 9 variables with 118 specific data per variable, which were analyzed using a ...

متن کامل

Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

Prediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: a case study of Birjand, Iran

Background: Data mining (DM) is an approach used in extracting valuable information from environmental processes. This research depicts a DM approach used in extracting some information from influent and effluent wastewater characteristic data of a waste stabilization pond (WSP) in Birjand, a city in Eastern Iran. Methods: Multiple regression (MR) and neural network (NN) models were examined u...

متن کامل

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Waste management

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2016